Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The US and the rest of the world have suffered from the COVID-19 pandemic for over a year. The high transmissibility and severity of this virus have provoked governments to adopt a variety of mitigation strategies. Some of these previous measures, such as social distancing and mask mandates, were effective in reducing the case growth rate yet became economically and administratively difficult to enforce as the pandemic continued. In late December 2020, COVID-19 vaccines were first approved in the US and states began a phased implementation of COVID-19 vaccination. However, there is limited quantitative evidence regarding the effectiveness of the phased COVID-19 vaccination. This study aims to provide a rapid assessment of the adoption, reach, and effectiveness of the phased implementation of COVID-19 vaccination. We utilize an event-study analysis to evaluate the effect of vaccination on the state-level daily COVID-19 case growth rate. Through this analysis, we assert that vaccination was effective in reducing the spread of COVID-19 shortly after the first shots were given. Specifically, the case growth rate declined by 0.124, 0.347, 0.345, 0.464, 0.490, and 0.756 percentage points corresponding to the 1–5, 6–10, 11–15, 16–20, 21–25, and 26 or more day periods after the initial shots. The findings could be insightful for policymakers as they work to optimize vaccine distribution in later phases, and also for the public as the COVID-19 related health risk is a contentious issue.more » « less
-
null (Ed.)Social distancing policies have been regarded as effective in containing the rapid spread of COVID-19. However, there is a limited understanding of policy effectiveness from a spatiotemporal perspective. This study integrates geographical, demographical, and other key factors into a regression-based event study framework, to assess the effectiveness of seven major policies on human mobility and COVID-19 case growth rates, with a spatiotemporal emphasis. Our results demonstrate that stay-at-home orders, workplace closures, and public information campaigns were effective in decreasing the confirmed case growth rate. For stay-at-home orders and workplace closures, these changes were associated with significant decreases (p < 0.05) in mobility. Public information campaigns did not see these same mobility trends, but the growth rate still decreased significantly in all analysis periods (p < 0.01). Stay-at-home orders and international/national travel controls had limited mitigation effects on the death case growth rate (p < 0.1). The relationships between policies, mobility, and epidemiological metrics allowed us to evaluate the effectiveness of each policy and gave us insight into the spatiotemporal patterns and mechanisms by which these measures work. Our analysis will provide policymakers with better knowledge regarding the effectiveness of measures in space–time disaggregation.more » « less
-
Abstract Previous research has noted that many factors greatly influence the spread of COVID‐19. Contrary to explicit factors that are measurable, such as population density, number of medical staff, and the daily test rate, many factors are not directly observable, for instance, culture differences and attitudes toward the disease, which may introduce unobserved heterogeneity. Most contemporary COVID‐19 related research has focused on modeling the relationship between explicitly measurable factors and the response variable of interest (such as the infection rate or the death rate). The infection rate is a commonly used metric for evaluating disease progression and a state's mitigation efforts. Because unobservable sources of heterogeneity cannot be measured directly, it is hard to incorporate them into the quantitative assessment and decision‐making process. In this study, we propose new metrics to study a state's performance by adjusting the measurable county‐level covariates and unobservable state‐level heterogeneity through random effects. A hierarchical linear model (HLM) is postulated, and we calculate two model‐based metrics—the standardized infection ratio (SDIR) and the adjusted infection rate (AIR). This analysis highlights certain time periods when the infection rate for a state was high while their SDIR was low and vice versa. We show that trends in these metrics can give insight into certain aspects of a state's performance. As each state continues to develop their individualized COVID‐19 mitigation strategy and ultimately works to improve their performance, the SDIR and AIR may help supplement the crude infection rate metric to provide a more thorough understanding of a state's performance.more » « less
An official website of the United States government
